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Phenomics – some definitions

Phenotype: observable characteristics of an organism 
– result of genotype x environment interactions

Phenome: “the full set of phenotypes of an 
individual” (Houle et al., 2010) 

Phenomics:

“…an emerging transdiscipline dedicated to the 
systematic study of phenotypes on a genome-wide 
scale” (Bilder, 2009)



Phenomics – characteristics

Phenomics is (usually):

• Multi-disciplinary

• Multi-scale (cellular, organ, organism, population)

• High-throughput phenotyping



A RAPIDLY INCREASING ACTIVITY
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PHENOTYPING FACILITIES: 2008

http://www.inra.fr/
http://www.ipk-gatersleben.de/Internet


PHENOTYPING FACILITIES: 2018

Adelaide 
Canberra

http://www.inra.fr/
http://www.ipk-gatersleben.de/Internet


Phenotyping technologies

• Many and varied

• Selected according to availability and 
amenability to automation

• Often based on imaging techniques:

– Visible/NIR/hyperspectral

– Tomography (OPT, MRI, CT, PET etc)

– Microscopy (light, EM)



Video 8x speed French et al. (2009); Wells et al. (2012) 

Automated image acquisition and analysis

RootTrace I



Naeem et al. (2011); Wells et al. (2012) 

RootTrace II



Examples

• Cell-scale: hormone dynamics in Arabidopsis

• Organ-scale: zebrafish larvae

• Organism level: wheat seedling root systems

• Population level: field crops

• Case study: developing a phenotyping facility 
at UoN



Cell-scale phenotyping - example

Development of fluorescence-based hormone 
sensors in Arabidopsis allows cellular-level 
modelling of distribution and response

Required input from biologists, biophysicists, 
bioinformaticians, computer scientists (image 
analysts), mathematical modellers



Cellular resolution modelling

Requirements:

– extraction of cell-level fluorescence data:

• to map root geometry

• to quantify sensor fluorescence 

– Biological parameter estimation to populate 
model with carriers etc.



Phenotyping pipeline

Image(s) Extract:
geometry
reporter(s)

Modelling Visualisation

CellSeT
Comp Sci

OpenAlea
Maths

Simulator
Bioinf/all

CLSM
Biologist



CellSeT - Tagging and measurement



Modelling

• Extracted geometries read into a vertex-based model, based on 
the OpenAlea modelling framework. 

• carrier distributions prescribed

• ODEs for:
– diffusion of protonated auxin across cell membranes

– carrier-mediated auxin transport

– passive diffusion of auxin within the cell wall

– degradation of biosensor fluorescence via a parameterised network model

http://openalea.gforge.inria.fr



In silico simulation of the hormone fluxes through the root 
tissue, using segmented cell geometries:

Band et al. (2014)http://www.simuplant.org/

Visualisation/interaction via simulator website



Organ-scale phenotyping

• Zebrafish anatomy

– High throughput (18 seconds/larva)

– Optical projection tomography (320 images)

– 3D reconstruction of entire larvae 

– Craniofacial cartilage (dyed)

• 200 independent morphological measurements

• Used in studies of teratogen action



Pardo-Martin et al. (2013)

Organ-scale phenotyping



Results – teratogen studies



Organism-level phenotyping

• Root systems architecture may represent 
untapped genetic resource to improve 
modern crops

• Screen mapping populations for desirable root 
traits (e.g.: deep for water and nitrate, shallow 
for phosphorus)



Wheat root phenotyping – mapping populations

Savannah Rialto

• Group 4
• Feed wheat
• Very High Yield 

• Group 1
• Bread wheat
• High quality  

X

• 132 doubled haploid lines

• All genotyped using iSelect 80k SNP array –
publically available maps for 44k of those SNPs

• 96 lines (20 replicates) phenotyped using a 2D-
imaging pipeline



2D Phenotyping pipeline

4 components of the 2D root phenotyping pipeline…

1. Plant growth system 2. Image capture

3. Image analysis & trait quantification 4. QTL analysis



Image analysis - RootNav

• Semi-automatic analysis and 

quantification of RSA

• 30s – 2 minutes per image

• Spline data stored on RootNav 

server

• Root data can be queried using 

the viewer tool. 

• Traits quantified and exported 

via RSML



Winter Wheat var: 
Glasgow



Glasgow Ae. buncialis Ae. uniaristata T. dicocchodies Ae. variablis

Ae. genticulata Ae. markgafii Ae. columnaris T. urartu Ae. peregrina

Glasgow Ae. buncialis Ae. uniaristata T. dicocchodies Ae. variablis

Ae. genticulata Ae. markgafii Ae. columnaris T. urartu Ae. peregrina



QTL Analysis Results

Indicates the presence of a 
major effect gene 
regulating seedling root 
architecture/vigour 

Atkinson et al. (2015)



2D Seedling Root Phenotyping

RNAseq

NILs

Collaboration with 
Laura Gardiner 

(Earlham)

Collaboration with 
Limagrain

18 candidate 
genes

• Currently 
phenotyping

• Being evaluated in 
the field

• 18 cM introgression 
which confers the 
phenotype  

Jonathan Atkinson (unpublished)



Sav HNSav LN

Ria LN Ria HN

Marcus Griffiths (unpublished)

Variable N (3.8 mM vs 1 mM)

2D Seedling Root Phenotyping



Marcus Griffiths (unpublished)

QTL for response to variable N 
(3.8 mM vs 1 mM)

Low-, high- and N-independent    
QTL discovered

RNA-Seq for QTL on Chr 2D

2D Seedling Root Phenotyping



Marcus Griffiths (unpublished)

Gene Log2 fold change Adjusted p value Annotation Functional annotation

MSTRG.39093 1.73 0.001733593 ref_gene_id_”TRIAE_CS42_2DL_TGACv1_158120_AA0509790” Peroxidase

TRIAE_CS42_2DL_TGA 

Cv1_158042_AA0507110

1.45 0.013427885 ref_gene_id TRIAE_CS42_2DL_TGACv1_158042_AA0507110 Cysteine/Histidine-rich C1 domain family 

protein

MSTRG.42598 1.31 0.040518291 TGACv1_scaffold_178694_2DS Unknown

TRIAE_CS42_2DL_TGA 

Cv1_158637_AA0523690

1.29 0.036921878 ref_gene_id_"TRIAE_CS42_2DL_TGACv1_158637_AA0523690"; P-loop containing nucleoside 

triphosphate hydrolases family protein

MSTRG.40726 2.12 2.52E-05 TGACv1_scaffold_160426_2DL Unknown

TRIAE_CS42_2DS_TGACv1_

178283_AA0593780

2.21 9.50E-06 ref_gene_id_"TRIAE_CS42_2DS_TGACv1_178283_AA0593780"; Unknown

MSTRG.40576 1.53 0.007831497 ref_gene_id_”TRIAE_CS42_2DL_TGACv1_160112_AA0546950” Wound-responsive family protein

MSTRG.41621 1.29 0.036320236 ref_gene_id_”TRIAE_CS42_2DS_TGACv1_177373_AA0574940” Zinc-finger protein

MSTRG.41900 1.36 0.035609902 ref_gene_id_"TRIAE_CS42_2DS_TGACv1_177679_AA0582290"; Lectin-domain containing receptor 

kinase A4.3

MSTRG.40281 1.44 0.012862779 ref_gene_id_"TRIAE_CS42_2DL_TGACv1_159581_AA0540110"; Heavy metal transport/detoxification 

superfamily protein

MSTRG.40366 2.02 8.89E-05 TGACv1_scaffold_159729_2DL Unknown

MSTRG.41870 1.38 0.025822143 ref_gene_id_”TRIAE_CS42_2DS_TGACv1_177631_AA0581600” Peroxidase

MSTRG.41588 1.66 0.002127833 TGACv1_scaffold_177335_2DS Zinc finger BED domain-containing 

protein RICESLEEPER 2-like

MSTRG.39748 1.66 0.001812471 ref_gene_id_"TRIAE_CS42_2DL_TGACv1_158826_AA0526780"; Basic helix-loop-helix (BHLH) 

Transcription Factor

MSTRG.39185 1.41 0.025442551 ref_gene_id_”TRIAE_CS42_2DL_TGACv1_158211_AA0512570” Peroxidase

MSTRG.41090 1.48 0.013212786 TGACv1_scaffold_161672_2DL Unknown

MSTRG.40833 1.88 0.000358374 ref_gene_id_”TRIAE_CS42_2DL_TGACv1_160694_AA0553200” Nitrate transporter 1.2

RNA-seq for RRAE251/1001 QTL on chromosome 2D, 3299 differentially expressed genes were identified 
between wheat lines with QTL (Group A) and without QTL (Group B)

2D Seedling Root Phenotyping



Population scale: field phenotyping



Population scale: field phenotyping

https://www.youtube.com/watch?v=Wj-U0QH5J_M

https://www.youtube.com/watch?v=Wj-U0QH5J_M


Case study: developing a phenotyping 
facility at UoN

• Rationale – micro-computed X-ray 
tomographic (µCT) scanning allows imaging of 
root systems in soil.

• Use of mesocosms of realistic dimensions at 
reasonable throughput presents many 
technical challenges





Hounsfield Facility



Mesocosm preparation: standardising soils



Sample handling

• Glasshouse capacity 140 columns

• Column dimensions 1 m x 25-30 cm OD

• Weight ~60-90 kg

• Minimal disturbance (reduce growth effects, settling 
of soil etc.)

• 24/7 automated operation

• Laser guided vehicle (LGV)
– autonomous robot







Scanning

Modified large scanner

high power 320kV minifocus 
X-ray tube

heavy duty manipulator 
stage 

high contrast digital 
detector

Volumes automatically 
stitched and reconstructed 
on acquisition 







Maize in sandy loam, resolution 30µm

Mairhofer et al. (2012); Mairhofer et al. (2013)

Image analysis- RooTrak





X-ray Computed Tomography 

T. urartu Ae. speltodies T. dicoccoides Ae. tauschii T. aestivum

Ancient relatives of 
wheat 

• Variation for 
useful agricultural 
traits such as 
more roots at 
depth

• Select  WISP/DFW 
introgression 
panels from the 
Ian and Julie King 
which may have 
beneficial root 
architecture traits

Atkinson & Atkinson, unpublished



Unblocking the image analysis bottleneck

In Arabidopis, image analysis unblocked 
the phenotyping bottleneck.

In larger, more complex plants – image 
analysis is again a limiting step.

Can new techniques help?



Unblocking the image analysis bottleneck

Machine learning for image analysis

1. ‘Traditional’ machine learning
• PRIMAL - Random Forest

2. Deep learning 
• Convolutional neural networks (CNNs)

Machine learning



• Requires around 600 training images 
to be analyzed to achieve an R2 of ~0.9

• 12/13 QTL discovered using PRIMAL vs 
RootNav

• Does sometimes create false positives 
with low LOD scores, but these often 
co-localise with other ‘real’ QTL

Chr Trait Manual 
(RootNav

)

Automatic
(RiaJ)

Primal (600 
images)

4D W/D ratio 2.7 2.71 2.5

6D Seminal count 3.3

Total root length 24 17 16.0

Mean seminal length 22.2 14.0

Lateral count 9.1 17.0

Total lateral length 6.4 12.6

Total seminal length 25.6 15.2

Width 6.4 13.5 13.1

Depth 22.7 13.6 15.0

W/D ratio 2.2

7A Seminal number 2.1

7D Lateral number 2.4 5.0

Seminal number 3.4

Total lateral length 2 4.2

Total root length 9 4.1 3.1

Total seminal length 9.7 2.8

Atkinson et al., 2017. Gigascience Lobet et al., 2017. Front Plant Sci.

Machine learning



Relies on training a network using a 
large number of annotated images 

• The more training data you use, 
the better it becomes

Does not use pre-computed features

Once trained, the network can annotate 
new images 

Deep machine learning



Pound et al. (2017)
Pound et al. (2017, ICCV)

• >97% accuracy in most of the example uses tested to date
• LeMuR: Plant Root Phenotyping via Learned Multi-resolution Image Segmentation  (AutoRootNav)

Deep machine learning



Annotation tool

Deep machine learning



Coming soon: 

Laser Ablation Tomography (LAT)













Summary

• Phenomics aims to bridge the “genotype-
phenotype gap”

• Phenomics involves high throughput 
acquisition and analysis of multi-dimensional 
data

• Phenomic pipelines utilise multiple disciplines 
and technologies
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