Graduate School Course on Post-genomics and bio-informatics

A practical approach to phenomics

Darren M Wells

darren.wells@nottingham.ac.uk

Overview

- Definitions
- Technologies
- Examples
- Case study & tour the Hounsfield Facility

Phenomics – some definitions

Phenotype: observable characteristics of an organism – result of genotype x environment interactions

Phenome: "the full set of phenotypes of an individual" (Houle *et al.*, 2010)

Phenomics:

"...an emerging transdiscipline dedicated to the systematic study of phenotypes on a genome-wide scale" (Bilder, 2009)

Phenomics – characteristics

Phenomics is (usually):

• Multi-disciplinary

• Multi-scale (cellular, organ, organism, population)

• High-throughput phenotyping

Phenotyping technologies

- Many and varied
- Selected according to availability and amenability to automation
- Often based on imaging techniques:
 - Visible/NIR/hyperspectral
 - Tomography (OPT, MRI, CT, PET etc)
 - Microscopy (light, EM)

Automated image acquisition and analysis

RootTrace I

Video 8x speed

French et al. (2009); Wells et al. (2012)

RootTrace II

Naeem et al. (2011); Wells et al. (2012)

Examples

- Cell-scale: hormone dynamics in *Arabidopsis*
- Organ-scale: zebrafish larvae
- Organism level: wheat seedling root systems
- Population level: field crops
- Case study: developing a phenotyping facility at UoN

Cell-scale phenotyping - example

Development of fluorescence-based hormone sensors in *Arabidopsis* allows cellular-level modelling of distribution and response

Required input from biologists, biophysicists, bioinformaticians, computer scientists (image analysts), mathematical modellers

Cellular resolution modelling

Requirements:

– extraction of cell-level fluorescence data:

- to map root geometry
- to quantify sensor fluorescence
- Biological parameter estimation to populate model with carriers etc.

Phenotyping pipeline

CellSeT - Tagging and measurement

Measurement Tag Data Point © File @ Area ? C/E Stem • Add Cells Remove Cells ? Add Walls Remove Walls ? Clear All ? Clear All ? Clear All ? Clear All ? Export Data Image Output Cell Walls Cell Walls Plugins Masurement The refined network snake can now be used to obtain measurements relating to any cells or walls that are hightlighted.	*		Mascurament		
	H H	Tag Data Point Point C/E Stem Add Cell Add Wal Add Wal Export Data Timage O Cell Map Cell Wall Plugins Measuremen The refined nu obtain measu walls that are	File Area File Area Remove Cells Is Remove Walls Tag All Clear All Output Timetwork snake can now l rements relating to any hightlighted.	? ? ? ? ? ? ? ges	l to

Modelling

- Extracted geometries read into a vertex-based model, based on the OpenAlea modelling framework.
- carrier distributions prescribed
- ODEs for:
 - diffusion of protonated auxin across cell membranes
 - carrier-mediated auxin transport
 - passive diffusion of auxin within the cell wall
 - degradation of biosensor fluorescence via a parameterised network model

http://openalea.gforge.inria.fr

In silico simulation of the hormone fluxes through the root tissue, using segmented cell geometries:

Visualisation/interaction via simulator website

http://www.simuplant.org/

The Centre for Plant Integrative Biology

www.cpib.ac.uk

UNITED KINGDOM · CHINA · MALAYSIA

Visualisation – Simulator

S VRoot Simulator		23
File Help		
Geometry Parameters Carrier	Visualisation	
	Simulation 1 × +	
permeability to auxin2,016.0permeability due to AUX10.0permeability due to PINs1,008.0apoplastic pH5.3cytoplasmic pH7.2membrane potential0.12	Auxin 4.0 3.6 3.1 2.7 2.2	
auxin production rate 0.0 auxin degradation rate 0.0 cell-wall thickness 0.2	1.8 1.3 0.9	
Reset to default	0.4	
Run New	0.0	
Snapshots: 10 Interval: 0.2	Image: Colour Bar RGB Image: Colour Bar RGB Image: Colour Bar RGB Export one	•
Information of the selected cell		
Snapshot 1 ready.	Image: Species in the second secon	
Snapshot 2 ready. Snapshot 3 ready		-

http://www.simuplant.org/

Organ-scale phenotyping

- Zebrafish anatomy
 - High throughput (18 seconds/larva)
 - Optical projection tomography (320 images)
 - 3D reconstruction of entire larvae
 - Craniofacial cartilage (dyed)
 - 200 independent morphological measurements
 - Used in studies of teratogen action

Organ-scale phenotyping

Results – teratogen studies

Organism-level phenotyping

- Root systems architecture may represent untapped genetic resource to improve modern crops
- Screen mapping populations for desirable root traits (e.g.: deep for water and nitrate, shallow for phosphorus)

Wheat root phenotyping – mapping populations

Savannah

- Group 4
- Feed wheat
- Very High Yield

Rialto

- Group 1
- Bread wheat
- High quality
- 132 doubled haploid lines

Х

 All genotyped using iSelect 80k SNP array – publically available maps for 44k of those SNPs

 96 lines (20 replicates) phenotyped using a 2Dimaging pipeline

2D Phenotyping pipeline

4 components of the 2D root phenotyping pipeline...

1. Plant growth system

2. Image capture

4. QTL analysis

3. Image analysis & trait quantification

Plant Growth System

Image analysis - RootNav

- Semi-automatic analysis and quantification of RSA
- 30s 2 minutes per image
- Spline data stored on RootNav server
- Root data can be queried using the viewer tool.
- Traits quantified and exported via RSML

QTL Analysis Results

Indicates the presence of a major effect gene regulating seedling root architecture/vigour

2D Seedling Root Phenotyping

Jonathan Atkinson (unpublished)

Population scale: field phenotyping

The High Resolution Plant Phenomics Centre

Population scale: field phenotyping

https://www.youtube.com/watch?v=Wj-U0QH5J_M

Case study: developing a phenotyping facility at UoN

 Rationale – micro-computed X-ray tomographic (μCT) scanning allows imaging of root systems in soil.

 Use of mesocosms of realistic dimensions at reasonable throughput presents many technical challenges

Hounsfield Facility

Mesocosm preparation: standardising soils

Sample handling

- Glasshouse capacity 140 columns
- Column dimensions 1 m x 25-30 cm OD
- Weight ~60-90 kg
- Minimal disturbance (reduce growth effects, settling of soil etc.)
- 24/7 automated operation
- Laser guided vehicle (LGV)
 - autonomous robot

Scanning

- Modified large scanner
- high power 320kV minifocus X-ray tube
- heavy duty manipulator stage
- high contrast digital detector
- Volumes automatically stitched and reconstructed on acquisition

Image analysis- RooTrak

Maize in sandy loam, resolution 30µm

Mairhofer et al. (2012); Mairhofer et al. (2013)

X-ray Computed Tomography

Ancient relatives of wheat

- Variation for useful agricultural traits such as more roots at depth
- Select WISP/DFW introgression panels from the lan and Julie King which may have beneficial root architecture traits
 Atkinson & Atkinson, unpublished

Unblocking the image analysis bottleneck

In *Arabidopis,* image analysis unblocked the phenotyping bottleneck.

In larger, more complex plants – image analysis is again a limiting step.

Can new techniques help?

Machine learning Unblocking the image analysis bottleneck

Machine learning for image analysis

- 1. 'Traditional' machine learning
 - PRIMAL Random Forest
- 2. Deep learning
 - Convolutional neural networks (CNNs)

Machine learning

PRIMAL

Accurate data 0

Machine learning

Chr	Trait	Manual (RootNav)	Automatic (RiaJ)	Primal (600 images)
4D	W/D ratio	2.7	2.71	2.5
6D	Seminal count			3.3
	Total root length	24	17	16.0
	Mean seminal length	22.2		14.0
	Lateral count	9.1		17.0
	Total lateral length	6.4		12.6
	Total seminal length	25.6		15.2
	Width	6.4	13.5	13.1
	Depth	22.7	13.6	15.0
	W/D ratio			2.2
7A	Seminal number	2.1		
7D	Lateral number	2.4		5.0
	Seminal number			3.4
	Total lateral length	2		4.2
	Total root length	9	4.1	3.1
	Total seminal length	9.7		2.8

- Requires around 600 training images to be analyzed to achieve an R² of ~0.9
- 12/13 QTL discovered using PRIMAL vs RootNav
- Does sometimes create false positives with low LOD scores, but these often co-localise with other 'real' QTL

Deep machine learning

Relies on training a network using a large number of annotated images

• The more training data you use, the better it becomes

Does not use pre-computed features

Once trained, the network can annotate new images

Deep machine learning

- >97% accuracy in most of the example uses tested to date
- LeMuR: Plant Root Phenotyping via Learned Multi-resolution Image Segmentation (AutoRootNav)

Pound *et al.* (2017) Pound *et al.* (2017, ICCV)

Deep machine learning

Annotation tool

Summary

- Phenomics aims to bridge the "genotypephenotype gap"
- Phenomics involves high throughput acquisition and analysis of multi-dimensional data
- Phenomic pipelines utilise multiple disciplines and technologies

References/further reading

Houle D., Govindaraju D.R., Omholt S. (2010) Phenomics: the next challenge. Nature Reviews Genetics 11 (12): 855–66

Furbank RT, Tester M. (2011) Phenomics-technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 16(12):635-44

Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M. (2017) Plant Phenomics, From Sensors to Knowledge. Curr Biol. 27:R770–R783

Databases: <u>http://www.phenomicdb.de/</u> Resources: <u>http://www.plant-phenomics.ac.uk/en/resources/</u>